
Submission Instructions
Computer Science 2334

Fall 2013

To submit an assignment, you should:

1. Generate the appropriate Javadoc documentation as described in Section A of the Detailed
Instructions below.
2. Archive the project using the instructions given in Section B of the Detailed Instructions below.
3. Upload the project archive to http://learn.ou.edu using the correct drop box.

Please follow these instructions carefully. These instructions were developed with faculty, teaching
assistants, and students in mind. If you have any questions after you read this document in its entirety,
please contact your instructor or one of your TAs immediately. Also, for many assignments (most labs
and projects 2 – 4), students should work together in groups and submit a single deliverable for each
group, as detailed in the Documentation Requirements file.

Detailed Instructions:

If you are submitting the final project make sure to include “Milestones.txt” inside the Eclipse project –
don’t submit it separately. The Milestones.txt file will be included only on the final project submission;
not labs or project designs. The Milestones.txt file will list the numbered objectives of the project and
describe the objectives you believe that you have met. If you know of problems in meeting an objective,
explain the problem, so that you may be considered for partial credit. A sample is given below.

Milestone #1:
We met this milestone. The test data which demonstrates this is in milestone1.txt

Milestone #2:
We did not meet this milestone.

Milestone #3:
We sort of met this milestone. Our test data (included in obj3.txt) runs OK until the
remove command is done. At this point the program gives a NullPointerException.

Directing the grader’s attention to a part of the project that you struggled with and detailing what you
attempted to do (along with what you accomplished) will allow the grader to be more fair in assigning a
grade. If you fail to do so, then the grader may conclude that you had no idea what was going on and
therefore you will not receive as much partial credit.

Section A – Creating Javadoc:
Before proceeding, read about how to generate the correct Javadoc documentation in Documentation
Requirements. This file can be found on the class website, just as this one is. Java generates nicely
formatted html documentation for its classes, just like what you see when you browse the Java API
online at http://docs.oracle.com/javase/7/docs/api/. The trick is that you need to format your comments
correctly in order to do so. The Documentation Requirements give those instructions in detail. This
document will only show how to generate the documentation after you have properly written your
source code and comments.

CS 2334 Fall 2013 1

http://docs.oracle.com/javase/7/docs/api/
http://learn.ou.edu/

Javadoc Step 1 – Select the project for which to generate the Javadoc

Javadoc Step 2 – Run the command to generate the Javadoc

CS 2334 Fall 2013 2

Javadoc Step 3 – Set the correct options

This window does a few things. First, it makes sure that the javadoc command that Eclipse is expecting
to use is the correct one. The command should be in the same directory as were the previously used
commands java and javac, with respect to the JDK that you already installed. (Note that your path
should list JDK 7 rather than 6.)

Ensure that you choose to create Javadoc for members with visibility of private. This is not the default,
and if you follow good data encapsulation practices (and make most of your class variables private),
they will not show up unless you select the “Private” option, as done above. Don't worry, all of your
members with public, protected, and package visibility will also be included.

Note the destination location of your Javadoc (#3), as it should default to a “doc” directory inside your
project; then select next.

CS 2334 Fall 2013 3

Javadoc Step 4 – More configuration; keep the defaults, except for @author

This window keeps the defaults (or should, at least). Double-check that your selections are the same as
above, though, just to be sure.

There is one thing you need to change, however. Since we have to submit a copy of various assignments
for accreditation purposes, and we cannot have any personally identifying information on the submitted
assignments, we do not want you to include the @author tags. By default, it will be selected, but if you
included the tags in your source code (which we will be telling you NOT to do), you need to de-select
the option here so that it does not show up. Note that we do not want you to include it on your source
code either, so changing this default is really just keeping in line with our overall policy. You will
include a cover sheet (to be described later) that details exactly who did what.

CS 2334 Fall 2013 4

Javadoc Step 5 – Format the output and create the Javadoc

Be sure to insert “-breakiterator” (without quotes) as shown above. This will format the Javadoc
appropriately. The rest of the options should be the default. Press the Finish button to create the Javadoc.

CS 2334 Fall 2013 5

Javadoc Step 6 – Finding the resulting Javadoc

After running this wizard, you should have the Javadoc show up under a directory named “doc” in your
project. Look at your “package explorer” (the left-hand window pane that allows you to browse the
contents of any project), and it should be there. You can even right-click on the doc directory and choose
“properties” to discover the full path to your Javadoc, as it resides on the hard drive.

This ends our instructions on how to create Javadoc. Please ask a TA if you have any more questions,
and do it soon, as we will be creating Javadoc many times this semester, and it is part of your grade.

Section B – Creating an Eclipse Project Archive:
The following instructions will walk you through the process of creating an Eclipse project archive. We
will be submitting all programming assignments as Eclipse archives, so please pay attention to the steps.
In addition, the projects will have extra documentation that needs to be submitted, and if it is missing,
you will lose points. Please follow the instructions exactly. Before we show how to export an Eclipse
project, here is what needs to be submitted for the three types of programming assignments we will have
this semester:

1. Lab assignments—Lab assignments will consist of short and very specific exercises that
supplement course material. Often, starting source code is provided to the student, with the
expectation that the student will write code that will enable the existing program to function
properly. Detailed instructions are given with each lab. When the lab assignment is finished, the
group needs to hand in the “hard copy” (printed handout), and submit the “soft copy”
electronically to the appropriate dropbox on the D2L website (http://learn.ou.edu). For labs, the
soft copy should only contain the project archive (discussed below), and nothing else.

CS 2334 Fall 2013 6

http://learn.ou.edu/

2. Project Designs—Once a project has been assigned, each individual (Projects 1 and 5) or group
(Projects 2 – 4) will have a specific amount of time to submit both a hard copy and a soft copy of
the project design. This design does not need to be final; it may fluctuate and change
significantly before the project is finished. What this design should reflect, however, is a
carefully thought-out plan as to how the project specifications will be reached. This means that a
good amount of time should be put in before any code is written. In fact, no code is allowed to be
written inside the project design methods. This is called “stubbing” your code. Variables should
be declared, methods should have their signatures (names, parameters, and return types), and
comments describing each method should be present in the stub code. Along with the stub code
of the software system designed you should include fully implemented unit testing code. This
code will use JUnit and there should be at least one unit test for every non-trivial unit (method)
in the design. The hard copy should contain a printout the cover sheet, stubs, unit tests, and
UML. The soft copy should include the cover sheet, stubs, unit tests, UML, and Javadoc.

3. Final Project—When the final, working project is submitted, the hard copy should contain a
printout of the cover sheet, UML, fully implemented source code, and unit tests. The soft copy
should have all of these, and the Javadoc.

The proper format and content of these items will be elaborated on in the Documentation Requirements
file (and in class), but for now, you should concern yourself primarily with what to submit with each
assignment, both hard copy and soft.

Archive Step 1 – Select and name the project

Make sure the project has the correct name, and then select it by using a right click.

CS 2334 Fall 2013 7

Archive Step 2 – Choose the export option

Please use the wizard; do not try to archive the file via a third party application; the grader might not
have the same program as you, or the application may not include the hidden configuration files that
Eclipse uses to define the project.

CS 2334 Fall 2013 8

Archive Step 3 – Choose the correct format

Make sure to choose the archive file; we will be exporting the project to a zip file. Also note that our
format falls under the “General” section; not the “Java” section.

CS 2334 Fall 2013 9

Archive Step 4 – Choose the destination and run the export

Note that the project we have selected for export is selected for us in the upper-left pane. Also note that
all of the files in the project's directory should be selected. This is the point where you should ensure
that non-source code files (such as the Javadoc and your UML, and possibly the Milestones file) are also
selected for export. Then, choose your destination and remember it, since this is where you will find
your zip file to upload to D2L. By default, you should have the zip format selected, and the other options
you see above. If not, then choose them. As shown, you can name the zip whatever you like, since once
decompressed, it will have a folder that is named the name of your project. Usually, students name it the
same as their project. Finally, press the Finish button, and you are done!

CS 2334 Fall 2013 10

	To submit an assignment, you should:
	Detailed Instructions:
	Section A – Creating Javadoc:
	Javadoc Step 1 – Select the project for which to generate the Javadoc
	Javadoc Step 2 – Run the command to generate the Javadoc
	Javadoc Step 3 – Set the correct options
	Javadoc Step 4 – More configuration; keep the defaults, except for @author
	Javadoc Step 5 – Format the output and create the Javadoc
	Javadoc Step 6 – Finding the resulting Javadoc

	
	Section B – Creating an Eclipse Project Archive:
	Archive Step 1 – Select and name the project
	Archive Step 2 – Choose the export option
	Archive Step 3 – Choose the correct format
	Archive Step 4 – Choose the destination and run the export

